
Lecture 8: Naive Bayes
Applied Machine Learning
Volodymyr Kuleshov
Cornell Tech

Part 1: Text Classification
We will now do a quick detour to talk about an important application area of machine
learning: text classification.

Afterwards, we will see how text classification motivates new classification algorithms.

Review: Classification
Consider a training dataset .

We distinguish between two types of supervised learning problems depnding on the
targets .

1. Regression: The target variable is continuous: .
2. Classification: The target variable is discrete and takes on one of possible

values: . Each discrete value corresponds to a class that we
want to predict.

 = {(,), (,), … , (,)}!(1) "(1) !(2) "(2) !(#) "(#)

"($)

" ∈   ⊆ ℝ
" %

 = { , , … }"1 "2 "%

Text Classification
An interesting instance of a classification problem is classifying text.

Includes a lot applied problems: spam filtering, fraud detection, medical record
classification, etc.
Inputs are sequences of words of an arbitrary length.
The dimensionality of text inputs is usually very large, proportional to the size of
the vocabulary.

!

Classification Dataset: Twenty Newsgroups
To illustrate the text classification problem, we will use a popular dataset called 20-
newsgroups .

It contains ~20,000 documents collected approximately evenly from 20 different
online newsgroups.
Each newgroup covers a different topic such as medicine, computer graphics, or
religion.
This dataset is widely used to benchmark text classification and other types of
algorithms.

Let's load this dataset.

In [1]: #https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.
html

import numpy as np
import pandas as pd
from sklearn.datasets import fetch_20newsgroups

for this lecture, we will restrict our attention to just 4 different newsgroup
s:
categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.med
']

load the dataset
twenty_train = fetch_20newsgroups(subset='train', categories=categories, shuffle
=True, random_state=42)

print some information on it
print(twenty_train.DESCR[:1100])

.. _20newsgroups_dataset:

The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on
20 topics split in two subsets: one for training (or development)
and the other one for testing (or for performance evaluation). The split
between the train and test set is based upon a messages posted before
and after a specific date.

This module contains two loaders. The first one,
:func:`sklearn.datasets.fetch_20newsgroups`,

returns a list of the raw texts that can be fed to text feature
extractors such as :class:`sklearn.feature_extraction.text.CountVectorizer`
with custom parameters so as to extract feature vectors.
The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`,
returns ready-to-use features, i.e., it is not necessary to use a feature
extractor.

Data Set Characteristics:

 ================= ==========
 Classes 20
 Samples total 18846
 Dimensionality 1
 Features text
 ================= ==========

Usage
~~~~~



In [2]: # The set of targets in this dataset are the newgroup topics:
twenty_train.target_names

Out[2]: ['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']



In [3]: # Let's examine one data point
print(twenty_train.data[3])

From: s0612596@let.rug.nl (M.M. Zwart)
Subject: catholic church poland
Organization: Faculteit der Letteren, Rijksuniversiteit Groningen, NL
Lines: 10

Hello,

I'm writing a paper on the role of the catholic church in Poland after 1989.  
Can anyone tell me more about this, or fill me in on recent books/articles(
in english, german or french). Most important for me is the role of the 
church concerning the abortion-law, religious education at schools,
birth-control and the relation church-state(government). Thanx,

                                                 Masja,
"M.M.Zwart"<s0612596@let.rug.nl>



In [4]: # We have about 2k data points in total
print(len(twenty_train.data))

2257



Feature Representations for Text
Each data point  in this dataset is a squence of characters of an arbitrary length.

How do we transform these into -dimensional features  that can be used with our
machine learning algorithms?

!

& '(!)



We may devise hand-crafted features by inspecting the data:
Does the message contain the word "church"? Does the email of the user
originate outside the United States? Is the organization a university? etc.

We can count the number of occurrences of each word:
Does this message contain "Aardvark", yes or no?
Does this message contain "Apple", yes or no?
... Does this message contain "Zebra", yes or no?

Finally, many modern deep learning methods can directly work with sequences of
characters of an arbitrary length.



Bag of Words Representations
Perhaps the most widely used approach to representing text documents is called "bag of
words".

We start by defining a vocabulary  containing all the possible words we are interested in,
e.g.:

(

( = {church, doctor, fervently, purple, slow, . . . }



A bag of words representation of a document  is a function  that
outputs a feature vector

of dimension . The -th component  equals  if  convains the -th word in  and 

 otherwise.

! '(!) → {0, 1}|( |

'(!) =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

0
1
0
⋮
0
⋮

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

church
doctor
fervently

purple

( ) '(!)) 1 ! ) (
0



Let's see an example of this approach on 20-newsgroups .

We start by computing these features using the sklearn  library.

In [5]: from sklearn.feature_extraction.text import CountVectorizer

# vectorize the training set
count_vect = CountVectorizer(binary=True)
X_train = count_vect.fit_transform(twenty_train.data)
X_train.shape

Out[5]: (2257, 35788)



In sklearn , we can retrieve the index of  associated with each word  using the

expression count_vect.vocabulary_.get(word) :

'(!)

In [6]: # The CountVectorizer class records the index j associated with each word in V
print('Index for the word "church": ', count_vect.vocabulary_.get(u'church'))
print('Index for the word "computer": ', count_vect.vocabulary_.get(u'computer')
)

Index for the word "church":  8609
Index for the word "computer":  9338



Our featurized dataset is in the matrix X_train . We can use the above indices to

retrieve the 0-1 value that has been computed for each word:



In [7]: # We can examine if any of these words are present in our previous datapoint
print(twenty_train.data[3])

# let's see if it contains these two words?
print('---'*20)
print('Value at the index for the word "church": ', X_train[3, count_vect.vocabu
lary_.get(u'church')])
print('Value at the index for the word "computer": ', X_train[3, count_vect.voca
bulary_.get(u'computer')])
print('Value at the index for the word "doctor": ', X_train[3, count_vect.vocabu
lary_.get(u'doctor')])
print('Value at the index for the word "important": ', X_train[3, count_vect.voc
abulary_.get(u'important')])

From: s0612596@let.rug.nl (M.M. Zwart)
Subject: catholic church poland
Organization: Faculteit der Letteren, Rijksuniversiteit Groningen, NL
Lines: 10

Hello,

I'm writing a paper on the role of the catholic church in Poland after 1989.  
Can anyone tell me more about this, or fill me in on recent books/articles(
in english, german or french). Most important for me is the role of the 
church concerning the abortion-law, religious education at schools,
birth-control and the relation church-state(government). Thanx,

                                                 Masja,
"M.M.Zwart"<s0612596@let.rug.nl>

------------------------------------------------------------
Value at the index for the word "church":  1
Value at the index for the word "computer":  0
Value at the index for the word "doctor":  0



Practical Considerations
In practice, we may use some additional modifications of this techinque:

Sometimes, the feature  for the -th word holds the count of occurrences of

word  instead of just the binary occurrence.

'(!)) )
)

The raw text is usually preprocessed. One common technique is stemming, in which
we only keep the root of the word.

e.g. "slowly", "slowness", both map to "slow"

Filtering for common stopwords such as "the", "a", "and". Similarly, rare words are
also typically excluded.



Classification Using BoW Features
Let's now have a look at the performance of classification over bag of words features.

Now that we have a feature representation , we can apply the classifier of our choice,
such as logistic regression.

'(!)



In [8]: from sklearn.linear_model import LogisticRegression

# Create an instance of Softmax and fit the data.
logreg = LogisticRegression(C=1e5, multi_class='multinomial', verbose=True)
logreg.fit(X_train, twenty_train.target)

Out[8]:

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent work
ers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    1.0s finished

LogisticRegression(C=100000.0, multi_class='multinomial', verbose=True)



And now we can use this model for predicting on new inputs.

In [9]: docs_new = ['God is love', 'OpenGL on the GPU is fast']

X_new = count_vect.transform(docs_new)
predicted = logreg.predict(X_new)

for doc, category in zip(docs_new, predicted):
    print('%r => %s' % (doc, twenty_train.target_names[category]))

'God is love' => soc.religion.christian
'OpenGL on the GPU is fast' => comp.graphics



Summary of Text Classification
Classifying text normally requires specifiyng features over the raw data.
A widely used representation is "bag of words", in which features are occurrences
or counts of words.

Once text is featurized, any off-the-shelf supervised learning algorithm can be
applied, but some work better than others, as we will see next.



Part 2: Naive Bayes
Next, we are going to look at Naive Bayes --- a generative classification algorithm. We will
apply Naive Bayes to the text classification problem.



Review: Text Classification
An interesting instance of a classification problem is classifying text.

Includes a lot applied problems: spam filtering, fraud detection, medical record
classification, etc.
Inputs  are sequences of words of an arbitrary length.
The dimensionality of text inputs is usually very large, proportional to the size of
the vocabulary.

!



Review: Bag of Words Features
Given a vocabulary , a bag of words representation of a document  is a function 

 that outputs a feature vector

of dimension . The -th component  equals  if  convains the -th word in 

and  otherwise.

( !
'(!) → {0, 1}|( |

'(!) =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

0
1
0
⋮
0
⋮

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

church
doctor
fervently

purple

|( | ) '(!)) 1 ! ) (
0



Review: Generative Models
There are two types of probabilistic models: generative and discriminative.

(!, ") :  ×  → [0, 1]*+  
generative model

("|!) :  ×  → [0, 1]*+  
discriminative model

Given a new datapoint , we can match it against each class model and find the class that
looks most similar to it:

where we have applied Bayes' rule in the second equation.

!′

arg log ,("|!) = arg log = arg log ,(!|"),("),max
"

max
"

,(!|"),(")
,(!) max

"



Review: Gaussian Discriminant Model
The GDA algorithm defines the following model family.

The probability  of the data under class  is a 
 

with parameters .
The distribution over classes is 

, denoted 
. Thus, .

* (! ∣ " = -) - multivariate Gaussian
(https://en.wikipedia.org/wiki/Multivariate_normal_distribution)  (!; , ).- Σ-

,.- Σ-
Categorical

(https://en.wikipedia.org/wiki/Categorical_distribution)
Categorical( , , . . . , )'1 '2 '% (" = -) =*+ '-

Thus,  is a mixture of  Gaussians:(!, ")*+ %

(!, ") = (" = -) (!|" = -) =  (!; , )*+ ∑
-=1

%
*+ *+ ∑

-=1

%
'- .- Σ-

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Categorical_distribution


Problem 1: Discrete Data
What would happen if we used GDA to perform text classification? The first problem we
face is that the input data is discrete:

This data does not follows a Normal distribution, hence the GDA model is clearly
misspecified.

'(!) =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

0
1
0
⋮
0
⋮

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

church
doctor
fervently

purple



Problem 2: High Dimensionality
A first solution is to assume that  is sampled from a categorical distribution that assigns a
probability to each possible state of .

!
!

,(!) = , = 0.0012

⎛

⎝

⎜⎜⎜⎜⎜⎜

0
1
0
⋮
0

church
doctor
fervently

⋮
purple

⎞

⎠

⎟⎟⎟⎟⎟⎟

However, if the dimensionality  of  is high (e.g., vocabulary has size 10,000),  can take a

huge number of values (  in our example). We need to specify  parameters for
the categorical distribution.

& ! !
210000 − 12&



Naive Bayes Assumption
In order to deal with high-dimensional , we simplify the problem by making the Naive
Bayes assumption:

In other words, the probability  factorizes over each dimension.

!

,(!|") = ,( ∣ ")∏
)=1

&
!)

,(!|")



For example, if  is a binary bag of words representation, then  is the

probability of seeing the -th word.

! ,( |")!)
)

We can model each  via a Bernoulli distribution, which has only one

parameter.

,( |")!)

Hence, it takes only  parameters (instead of ) to specify the entire

distribution .

& − 12&

,(!|") = ,( ∣ ")∏&
)=1 !)



Bernoulli Naive Bayes Model
We can apply the Naive Bayes assumption to obtain a model for when  is in a bag of
words representation.

The Bernoulli Naive Bayes model  is defined as follows:

The distribution over classes is 
, denoted 

. Thus, .
The conditional probability of the data under class  factorizes as 

 (the Naive Bayes assumption), where each 

 is a .

!

(!, ")*+

Categorical
(https://en.wikipedia.org/wiki/Categorical_distribution)
Categorical( , , . . . , )'1 '2 '% (" = -) =*+ '-

-
(!|" = -) = * ( ∣ " = -)*+ ∏&

)=1 !)
( ∣ " = -)*+ !) Bernoullli( )/)-

https://en.wikipedia.org/wiki/Categorical_distribution


Formally, we have:
(")*+

( = 1|" = -)*+ !)

(!|" = -)*+

= Categorical( , , … , )'1 '2 '%
= Bernoullli( )/)-

= ( |" = -)∏
)=1

&
*+ !)



Part 3: Naive Bayes: Learning
We are going to continue our discussion of Naive Bayes.

We will now turn our attention to learnig the parameters of the model and using them to
make predictions.



Review: Text Classification
An interesting instance of a classification problem is classifying text.

Includes a lot applied problems: spam filtering, fraud detection, medical record
classification, etc.
Inputs  are sequences of words of an arbitrary length.
The dimensionality of text inputs is usually very large, proportional to the size of
the vocabulary.

!



Review: Bag of Words Features
Given a vocabulary , a bag of words representation of a document  is a function 

 that outputs a feature vector

of dimension . The -th component  equals  if  convains the -th word in 

and  otherwise.

( !
'(!) → {0, 1}|( |

'(!) =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

0
1
0
⋮
0
⋮

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

church
doctor
fervently

purple

|( | ) '(!)) 1 ! ) (
0



Bernoulli Naive Bayes Model
The Bernoulli Naive Bayes model  is defined as follows:

The distribution over classes is 
, denoted 

. Thus, .
The conditional probability of the data under class  factorizes as 

 (the Naive Bayes assumption), where each 

 is a .

(!, ")*+

Categorical
(https://en.wikipedia.org/wiki/Categorical_distribution)
Categorical( , , . . . , )'1 '2 '% (" = -) =*+ '-

-
(!|" = -) = * ( ∣ " = -)*+ ∏&

)=1 !)
( ∣ " = -)*+ !) Bernoullli( )/)-

https://en.wikipedia.org/wiki/Categorical_distribution


Review: Maximum Likelihood Learning
In order to fit probabilistic models, we use the following objective:

This seeks to find a model that assigns high probability to the training data.

log (!, ").max
+

+!,"∼ℙdata *+

Let's use maximum likelihood to fit the Bernoulli Naive Bayes model. Note that model
parameterss  are the union of the parameters of each sub-model:+

+ = ( , , … , , , , … , ).'1 '2 '% /11 /21 /&%



Learning a Bernoulli Naive Bayes Model
Given a dataset , we want to optimize the log-
likelihood :

 = {( , ) ∣ $ = 1, 2, … , #}!($) "($)

ℓ(+) = log 1(+)
ℓ(+) = log ( , ) = log ( | ) + log ( )∑

$=1

#
*+ !($) "($) ∑

$=1

#
*+ !($) "($) ∑

$=1

#
*+ "($)

= + .∑
-=1

%

∑
)=1

&
log * ( | ; )∑

$: =-"($)

!($)
) "($) /)-

  
all the terms that involve /)-

log * ( ; )∑
$=1

#
"($) '⃗

  
all the terms that involve '⃗

Notice that each parameter  is found in only one subset of terms and the  are also in

the same set of terms.

/)- '-



As in Gaussian Discriminant Analysis, the log-likelihood decomposes into a sum of terms.
To optimize for some , we only need to look at the set of terms that contain :/)- /)-

arg ℓ(+) = arg log ,( | ; ).max
/)-

max
/)- ∑

$: =-"($)

!($)
) "($) /)-

Similarly, optimizing for  only involves a single term:= ( , , … , )'⃗ '1 '2 '%

log ( , ; +) = log ( ; ).max
'⃗ ∑

$=1

#
*+ !($) "($) max

'⃗ ∑
$=1

#
*+ "($) '⃗



Optimizing the Model Parameters
These observations greatly simplify the optimization of the model. Let's first consider the

optimization over .= ( , , … , )'⃗ '1 '2 '%

As in Gaussian Discriminant Analysis, we can take a derivative over  and set it to zero to
obtain

for each , where  is the number of training targets with class .

'-

='-
#-

#
- = |{$ : = -}|#- "($) -

Thus, the optimal  is just the proportion of data points with class  in the training set!'- -



Similarly, we can maximize the likelihood for the other parameters to obtain closed form
solutions:

where  is the number of  with label  and a positive

occurrence of word .

Each  is simply the proportion of documents in class  that contain the word .

= ./)-
#)-

#-
|{$ : = 1 and = -}|!($)

) "($) !($) -
)

/)- - )



Querying the Model
How do we ask the model for predictions? As discussed earler, we can apply Bayes' rule:

Thus, we can estimate the probability of  and under each  and
choose the class that explains the data best.

arg ("|!) = arg (!|")* (").max
"

*+ max
"

*+

! (!|" = -)* (" = -)*+



Classification Dataset: Twenty Newsgroups
To illustrate the text classification problem, we will use a popular dataset called 20-
newsgroups .

It contains ~20,000 documents collected approximately evenly from 20 different
online newsgroups.
Each newgroup covers a different topic such as medicine, computer graphics, or
religion.
This dataset is widely used to benchmark text classification and other types of
algorithms.

Let's load this dataset.

In [10]: #https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.
html



    
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_20newsgroups

# for this lecture, we will restrict our attention to just 4 different newsgroup
s:
categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.med
']

# load the dataset
twenty_train = fetch_20newsgroups(subset='train', categories=categories, shuffle
=True, random_state=42)

# print some information on it
print(twenty_train.DESCR[:1100])

.. _20newsgroups_dataset:

The 20 newsgroups text dataset
------------------------------

The 20 newsgroups dataset comprises around 18000 newsgroups posts on
20 topics split in two subsets: one for training (or development)
and the other one for testing (or for performance evaluation). The split
between the train and test set is based upon a messages posted before
and after a specific date.

This module contains two loaders. The first one,
:func:`sklearn.datasets.fetch_20newsgroups`,
returns a list of the raw texts that can be fed to text feature
extractors such as :class:`sklearn.feature_extraction.text.CountVectorizer`
with custom parameters so as to extract feature vectors.
The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`,
returns ready-to-use features, i.e., it is not necessary to use a feature
extractor.

**Data Set Characteristics:**



    =================   ==========
    Classes                     20
    Samples total            18846
    Dimensionality               1
    Features                  text
    =================   ==========

Usage
~~~~~


Example: Text Classification
Let's see how this approach can be used in practice on the text classification dataset.

We will learn a good set of parameters for a Bernoulli Naive Bayes model
We will compare the outputs to the true predictions.

Let's see an example of this approach on 20-newsgroups .

We start by computing these features using the sklearn library.

In [11]: from sklearn.feature_extraction.text import CountVectorizer

vectorize the training set
count_vect = CountVectorizer(binary=True, max_features=1000)
y_train = twenty_train.target
X_train = count_vect.fit_transform(twenty_train.data).toarray()
X_train.shape

Out[11]: (2257, 1000)

Let's compute the maximum likelihood model parameters on our dataset.

In [12]: # we can implement these formulas over the Iris dataset
n = X_train.shape[0] # size of the dataset
d = X_train.shape[1] # number of features in our dataset
K = 4 # number of clases

these are the shapes of the parameters
psis = np.zeros([K,d])
phis = np.zeros([K])

we now compute the parameters
for k in range(K):
 X_k = X_train[y_train == k]
 psis[k] = np.mean(X_k, axis=0)
 phis[k] = X_k.shape[0] / float(n)

print out the class proportions
print(phis)

[0.21267169 0.25875055 0.26318121 0.26539654]

We can compute predictions using Bayes' rule.

In [13]: # we can implement this in numpy
def nb_predictions(x, psis, phis):
 """This returns class assignments and scores under the NB model.

 We compute \arg\max_y p(y|x) as \arg\max_y p(x|y)p(y)
 """
 # adjust shapes
 n, d = x.shape
 x = np.reshape(x, (1, n, d))
 psis = np.reshape(psis, (K, 1, d))

 # clip probabilities to avoid log(0)
 psis = psis.clip(1e-14, 1-1e-14)

 # compute log-probabilities
 logpy = np.log(phis).reshape([K,1])
 logpxy = x * np.log(psis) + (1-x) * np.log(1-psis)
 logpyx = logpxy.sum(axis=2) + logpy

 return logpyx.argmax(axis=0).flatten(), logpyx.reshape([K,n])

idx, logpyx = nb_predictions(X_train, psis, phis)
print(idx[:10])

[1 1 3 0 3 3 3 2 2 2]

We can measure the accuracy on the training set:

In [14]: (idx==y_train).mean()

Out[14]: 0.8692955250332299

In [15]: docs_new = ['OpenGL on the GPU is fast']

X_new = count_vect.transform(docs_new).toarray()
predicted, logpyx_new = nb_predictions(X_new, psis, phis)

for doc, category in zip(docs_new, predicted):
 print('%r => %s' % (doc, twenty_train.target_names[category]))

'OpenGL on the GPU is fast' => comp.graphics

Algorithm: Bernoulli Naive Bayes
Type: Supervised learning (multi-class classification)
Model family: Mixtures of Bernoulli distributions
Objective function: Log-likelihood.
Optimizer: Closed form solution.

Review: Generative Models
There are two types of probabilistic models: generative and discriminative.

(!, ") :  ×  → [0, 1]*+  
generative model

("|!) :  ×  → [0, 1]*+  
discriminative model

Given a new datapoint , we can match it against each class model and find the class that
looks most similar to it:

where we have applied Bayes' rule in the second equation.

!′

arg log ,("|!) = arg log = arg log ,(!|"),("),max
"

max
"

,(!|"),(")
,(!) max

"

Review: Gaussian Discriminant Model
The GDA algorithm defines the following model family.

The probability of the data under class is a

with parameters .
The distribution over classes is

, denoted
. Thus, .

* (! ∣ " = -) - multivariate Gaussian
(https://en.wikipedia.org/wiki/Multivariate_normal_distribution)  (!; ,).- Σ-

,.- Σ-
Categorical

(https://en.wikipedia.org/wiki/Categorical_distribution)
Categorical(, , . . . ,)'1 '2 '% (" = -) =*+ '-

Thus, is a mixture of Gaussians:(!, ")*+ %

(!, ") = (" = -) (!|" = -) =  (!; ,)*+ ∑
-=1

%
*+ *+ ∑

-=1

%
'- .- Σ-

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Categorical_distribution

Classification Dataset: Iris Flowers
To look at properties of generative algorithms, let's look again at the Iris flower dataset.

It's a classical dataset originally published by
 in 1936. Nowadays, it's widely used for

demonstrating machine learning algorithms.

R. A. Fisher
(https://en.wikipedia.org/wiki/Ronald_Fisher)

https://en.wikipedia.org/wiki/Ronald_Fisher

In [16]: import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from sklearn import datasets

Load the Iris dataset
iris = datasets.load_iris(as_frame=True)

print part of the dataset
iris_X, iris_y = iris.data, iris.target
pd.concat([iris_X, iris_y], axis=1).head()

Out[16]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target

0 5.1 3.5 1.4 0.2 0

1 4.9 3.0 1.4 0.2 0

2 4.7 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

If we only consider the first two feature columns, we can visualize the dataset in 2D.

In [17]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.ht
ml
%matplotlib inline
from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]

create 2d version of dataset
X = iris_X.to_numpy()[:,:2]
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

Plot also the training points
p1 = plt.scatter(X[:, 0], X[:, 1], c=iris_y, edgecolor='k', s=60, cmap=plt.cm.Pa
ired)
plt.xlabel('Sepal Length (cm)')
plt.ylabel('Sepal Width (cm)')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Versicolour', 'Vi
rginica'], loc='lower right')

Out[17]: <matplotlib.legend.Legend at 0x1259aee48>

Linear Discriminant Analysis
When the covariances in GDA are equal, we have an algorithm called Linear
Discriminant Analysis or LDA.

Let's try this algorithm on the Iris flower dataset.

Σ-

We may compute the parameters of this model similarly to how we did for GDA.

In [19]: # we can implement these formulas over the Iris dataset
d = 2 # number of features in our toy dataset
K = 3 # number of clases
n = X.shape[0] # size of the dataset

these are the shapes of the parameters
mus = np.zeros([K,d])
Sigmas = np.zeros([K,d,d])
phis = np.zeros([K])

we now compute the parameters
for k in range(3):
 X_k = X[iris_y == k]
 mus[k] = np.mean(X_k, axis=0)
 Sigmas[k] = np.cov(X.T) # this is now X.T instead of X_k.T
 phis[k] = X_k.shape[0] / float(n)

print out the means
print(mus)

[[5.006 3.428]
 [5.936 2.77]
 [6.588 2.974]]

We can compute predictions using Bayes' rule.

In [20]: # we can implement this in numpy
def gda_predictions(x, mus, Sigmas, phis):
 """This returns class assignments and p(y|x) under the GDA model.

 We compute \arg\max_y p(y|x) as \arg\max_y p(x|y)p(y)
 """
 # adjust shapes
 n, d = x.shape
 x = np.reshape(x, (1, n, d, 1))
 mus = np.reshape(mus, (K, 1, d, 1))
 Sigmas = np.reshape(Sigmas, (K, 1, d, d))

 # compute probabilities
 py = np.tile(phis.reshape((K,1)), (1,n)).reshape([K,n,1,1])
 pxy = (
 np.sqrt(np.abs((2*np.pi)**d*np.linalg.det(Sigmas))).reshape((K,1,1,1))
 * -.5*np.exp(
 np.matmul(np.matmul((x-mus).transpose([0,1,3,2]), np.linalg.inv(Sigm
as)), x-mus)
)
)
 pyx = pxy * py
 return pyx.argmax(axis=0).flatten(), pyx.reshape([K,n])

idx, pyx = gda_predictions(X, mus, Sigmas, phis)
print(idx)

[0 0
 0 0 0 0 1 0 0 0 0 0 0 0 0 2 2 2 1 2 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1
 2 2 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 2 1 2 2
 1 2 1 1 2 2 2 2 1 2 1 2 1 2 2 1 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2
 2 1]

We visualize predictions like we did earlier.

In [22]: from matplotlib.colors import LogNorm
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
Z, pyx = gda_predictions(np.c_[xx.ravel(), yy.ravel()], mus, Sigmas, phis)
logpy = np.log(-1./3*pyx)

Put the result into a color plot
Z = Z.reshape(xx.shape)
contours = np.zeros([K, xx.shape[0], xx.shape[1]])
for k in range(K):
 contours[k] = logpy[k].reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=iris_y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

Linear Discriminant Analysis outputs decision boundaries that are linear.

Softmax or Logistic regression also produce linear boundaries. In fact, both types of
algorithms make use of the same model class.

What is their difference then?

Generative vs. Discriminative Model Classes
In binary classification, we can also show that the conditional probability of a
Bernoulli Naive Bayes or LDA model has the form

for some set of parameters (whose expression can be derived from), which is the same
form as Logistic Regression!

("|!)*+

("|!) = =*+
(!|") (")*+ *+

(!|) ()∑ ∈"′ *+ "′ *+ "′
1

1 + exp(− !)2⊤

2 +

Does it mean that the two sets of algorithms are equivalent? No! They assume the same
model class , they use a different objective to select a model in . 3 

Generative Models vs. Logistic Regression
Given that both algorithms find linear boundaries, how should one choose between the
two?

Bernoulli Naive Bayes or LDA assumes a logistic form for . But converse is
not true: logistic regression does not assume a NB or LDA model for .

,("|!)
,(!, ")

Generative models make stronger modeling assumptions. If these assumptions hold
true, the generative models will perform better.

But if they don't, logistic regression will be more robust to outliers and model
misspecification, and achieve higher accuracy.

Other Features of Generative Models
Generative models can also do things that discriminative models can't do.

Generation: we can sample to generate new data (images, audio).
Missing value imputation: if is missing, we can infer it using .

Outlier detection: given a new , we can try detecting via if is invalid.

! ∼ ,(!|")
!) ,(!|")

!′ ,()!′ !′

Discriminative Approaches
Discriminative algorithms are deservingly very popular.

Most state-of-the-art algorithms for classification are discriminative
They are often more accurate because they make fewer modeling assumptions.

Generative Approaches
But generative algorithms also have many advantages:

Can do more than just prediction: generation, fill-in missing features, etc.
Can include extra prior knowledge; if prior knowledge is correct, model will be more
accurate.
Often have closed-form solutions, hence are faster to train.

